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A transient three-dimensional heat-conduction problem is solved for a wedge-shaped prism,
subject to varying conditions of heat transfer at the boundary; these conditions are either
linearly or exponentially dependent upon time,

Constructional elements in the form of wedge-shaped prisms with arbitrary aperture angles are widely
used in engineering practice. In calculating the strength of elementary constructions an analysis of the
stressed state of elements of this kind {and particularly the thermally-stressed state arising as a result of
transient, nonuniform heating) is of particular significance for this reason.

However, few papers have been published in relation to the transient heat-conduction problem for a
wedge-shaped prism, and then only on the assumption of a plane temperature distribution, changes in tem-
perature with respect to the height of the prism not heen taken into account. There are hardly any closed
analytical solutions for problems of transient heat conduction involving heat-transfer boundary conditions
varying with respect to both time and position.

In this paper we shall consider the problem of transient heat :onduction for a wedge-shaped prism with
an arbitrary aperture angle characterized by heat-transfer bounda. y conditions of the first kind at the faces
of the prism (these varying with respect to both time and coordinates) and heat-transfer boundary condi-
tions of the third kind at the ends of the prism and on its rear surface. For the particular cases of linear
and exponential time dependences of the boundary temperatures, the solutions relating to the prism are
obtained in closed form.

Let us consider a wedge-shaped prism of a certain height h(0 = z = h) and an
arbitrary aperture angle 2a(—a = ¢ = a) bounded by a rear surface r = R, The
choice of the cylindrical coordinate system is illustrated in Fig. 1.

Let us assume that at the initial instant of time 7 = 0 the prism is charac-
terized by a specific temperature distribution

t(r, o, 7, 0) =tr, 9, 2). (1)

On the end surfaces (z = 0 and z = h) and on the rear surface of the prism (r

= R) the heat transfer with the surrounding medium is specified by Newton's
law with corresponding relative heat-transfer coefficients %y, %y, %3, In or-
der to simplify the calculations we take the temperature of the surrounding
medium as zero; this will not restrict the generality of the solution. The
boundary conditions of heat transfer may then be written in the following man-

Z=h

P ner [1]:
R R ot
Fig. 1. Computing —— 4 ut=0 for r=R, (2)
scheme for the sam- or
ple, and choice of ot wf =0 for 2=0,
coordinate system. 0z
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g—t+u3t=o for z=~h. (3)
Z4

The temperatures on the faces of the wedge-shaped prism ¢ = —a and ¢ = @ we shall take as being specified
functions of the coordinates r and z and the time 7

Er, —a, 2z, 1) =1, r)]

tr, o 2 D) =1, 2, )

)

Thus the problem of determining the unknown temperature distribution t(r, ¢, z, 7) in the prism reduces to
the integration of the differential equation of transient heat conduction

o 2(221 1 a1 g?i,aﬁt)

[ — —_
ot ot 'y or rr . .og? - 02*

(5)
OLr< R —ago<La, 0L2Lh)

subject to the initial condition (1) and the boundary condition (2)-(4). The condition of finite temperature as
r — 0 is also introduced in the usual way.

In order to solve the problem we set up a system of orthonormalized eigenfunctions depending on the
coordinate ¢, which we obtain from a solution of the homogeneous Sturm—Liouville problem [2]:

ST @@m Do
D, () = l/-; COST(P

(m=0, 1, 2..)).

(6)

Expressing the unknown temperature-distribution function t(r, ¢, z, 7) in the form of an expansion with
respect to the system of eigenfunctions (6)

Hr, @ 2 1) = Pl 2 DO(9), 3
m==0
we obtain an inhomogeneous differential equation for the coefficients of the expansion

ot 0% . 1 o 0% v? \
m g2 m - — m f B — tm Fm' (8)
ot ( or? + r or h 0z> re ) - .

which is to be solved subject to the initial condition

@£

tulr, 2, O = (b= [1lrs @ 2 Dp(@)do (9)
and the boundary conditions
O, +ut, =0 for r=R, (10)
O — %t =0 for z=0
oz : (11)
i 4 Rl =0 for z=~h
0z
In Eq. (8) we have introduced the nomenclature
2m + 1
e 70
20
o (12)

Fo(r, 2, ©)=(—1)m i”a t(r, 2, Y+ 4 2, T

r2;
Let us apply a finite integral transformation of the Hankel type to the boundary problem (8)-(11) in respect
of the variable r; we define this in the following way [3]:

R
Touldg 2, T) = J rt(r, 2, ) J (A7) dr, (13)

0
where N are the positive roots of the equations

My (AR) + %,J (AR) = 0. (14)
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According to [3], the equation for inverting the integral transformation (13) takes the form
(15)

2 I (ar)
Llr, 2, T) = — =t T (M 2 7).
=% ) POGR) +Ta0aR) "

k=l

For the function Tm(hk, z, 7), after applying the transformation (13) to the problem (8)-(11), we obtain the

differential equation
aT,, T, =
pw =02(F ——kiT,,,) + Fo (16)
where &
Fo(Ay 2, 1) = ngm(r, z, 1) J (Ayr)dr
0
with the initial condition
R
Tp(Ms 2, 0) = (T,), = 5 I (o I (Agr)dr a7
0
and the end conditions
oT
6zm — %1, =0 for z2=0,
oT,, (18)
oz + % T, =0 for z=~h.
To the problem (16)-(18) ‘we now apply an integral transformation with respect to the variable z which
was used in [4] for the heat-conduction problem in a cylinder of finite length
h
T (M i T) = y Tl 2, 1) Z (n2) d2, (19)
]
where
Z(u2) = cospz + 22 sinpz. (20)
The function Z(ujz) satisfies the equation
Pz ez 0 (21)
dz? :
and the conditions
~d—Z— + Maz = 0 for 2= h
dz , (22)
iZ——7~:22=0 for z=0
where y1; are positive roots of the equation
%, -+ .
t h — 2 3
gy WE — g (23)
The equation for inverting the transformation (19) takes the form
(29)

T (A 2, 1) = zAﬁ;m(xk’ e D Z (p;2),

i==l

where
h
— M2 (2 2
A= [ YZz(piz) dz] g kil 2
. ’ (P«f + %3) (U? + %§) B - (3 - o) (12 -+ %,%)

0
The function Ty, (A, pj, 7) satisfies the ordinary differential equation
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%7%@« — (T, — 4Ty + Fr (25)
with the initial condition
h
T s 0) = [ (T)o Z (w2) . (26)
: i
In Eq. (25)
h
F_vm(hh’ Wy T)= Svﬁm(kk’ z, 1) Z(n2)de. (27)

0

The general solution of Eq. (25) for the condition (26) takes the form

T:
Tolhao 1y D= § Folhy oy whexp [— a3 + 12 ) (v — w)] du

6
h
+ [ (T)oZ (wi2) dz exp [— a¥(u} + 1) 1] (28)

(U

Carrying out the inverse transformations in accordance with (24) and (15), we finally obtain the temperature
distribution in the wedge-shaped prism in the form:

2 N (@em+Dax
A e

m=0

Hr, @, 2, T) =

o

N Jy0a) {g* =
X T 4 Fr(bs 1y 1)
2T+ 70 g .

k=}

h
X exp [— a*(2 4 ) (¢ — u)] dus-t- ( (ToloZ (:2) &2
o

Xexp [— 02(7% 4 p,?) 7] } (cos B2+ ,:L sin piz) ) (29)

z

Using Eq. (29) we may determine the temperature-distribution function in the wedge-shaped prism for
any boundary conditions of the type (1)-(4).

It is of considerable practical interest to determine the temperature distributions in a sample of
wedge-like profile for the case in which the temperature of the faces varies in accordance with a specific
time law, Boundary conditions of this kind may be used for studying the kind of sample heating or cooling
conditions actually encountered in experimental work,

Let us consider the particular case in which the temperatures of the sample faces vary linearly with
time at a certain constant rate of change v, i.e., we specify the boundary conditions (4) thus:

tr, —a, z, 1) =1{, +or,

3
t(r’ a, 2, T)::to—i_vt- ( 0)
We taken the initial sample temperature as constant

tr, @, 2, 0) = ¢, = const. (31)

Allowing for (9), (12), (17), and (27), we then obtain the temperature distribution in a wedge-shaped prism
subject to the boundary conditions (30) in the following form:

2 = @m+ DHn
tr, o, 2, 1) = Sl —1ym cos T2/
r, ¢, 2, 1) P (— 1™ cos % @

“m=0

N I () ? L2
X E N 2 Ai(cos 2 - —2 sin iz)
T I3 (R) +J,(4R) P ¢ i Sk
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v v v —a’(u?+7~2)1’
X { =t VP — 5o — | by — 5o P
{uf+x,z[°+ R+ 1) ( agﬂiﬂ?))e ]

% | DIRILARIS o o1 0nR) = PaRI, 4R) S5, 08) £ |

o sinph — %, cos pfl -+ %, i 2,  —at 2+ in
H VALR?

X IRRIF3R) Sy s R)— RT3 R) S3,0R) -+l | (32)
]

In expression (32) the coefficient Aj is determined in accordance with (24) while Sp q(z) is a Lommel func-
tion [5].

When the temperature on the faces of the prism varies in accordance with an exponential time law
with a certain variation coefficient v, i.e., the boundary conditions (4), take the form

tr, —a, z, 1) =1, o, 2, 1) =t,exp(—uv1), (33)

after repeating all the foregoing transformations we obtain the temperature distribution of the sample in
the following form:

2 N 2 1
0 m 9= — B (e DT,

m=0

RN Jo(Aer) = ( %, .
X n A; [cosp;z 4+ —2sin ,-z)
; 2 (R) 17 (R) b peo

i=1

a®vt, az'vto
|| T = e g el ]

1
x [(v — D ARI R Sy a(MaR) — BRIy 20 R) S (MR T]

s sin ph — %, cosph 4+ % 2t
x FEREE—BESE T e exp [— a0 + 1)
1 ®

X RIS lR) — 1R O RIS R+ | (34)
k

The resultant expressions for transient temperature distributions in a wedge-shaped prism constitute
series in known, tabulated functions and may be used for numerical calculations of temperature fields in
wedge-shaped samples using an electronic computer.
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