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A transient  three-dimensional  heat-conduction problem is solved for a wedge-shaped p r i sm,  
subject to varying conditions of heat t r ans fe r  at the boundary; these conditions are ei ther  
l inearly or exponentially dependent upon time. 

Constructional  e lements  in the form of wedge-shaped p r i sms  with a rb i t r a ry  aperture  angles are widely 
used in engineering pract ice .  In calculating the s trength of e lementary  construct ions  an analysis of the 
s t r e s sed  state of e lements  of this kind (and par t icular ly  the t he rma l ly - s t r e s sed  state ar is ing as a resul t  of 
t ransient ,  nonuniform heating) is of par t icular  significance for this reason.  

However,  few papers  have been published in relat ion to the t ransient  heat-conduction problem for a 
wedge-shaped p r i sm ,  and then only on the assumption of a plane tempera ture  distribution, changes in t em-  
perature  with respec t  to the height of the p r i sm not been taken into account. There  are hardly any closed 
analytical solutions for problems of t ransient  heat conduction involving hea t - t r ans fe r  boundary conditions 
varying with respec t  to both time and position. 

In this paper we shall consider  the problem of t ransient  hen+ onduction for a wedge-shaped p r i sm with 
an a rb i t r a ry  aper ture  angle charac te r i zed  by hea t - t r ans fe r  bounda.y conditions of the f i rs t  kind at the faces 
of the p r i sm (these varying with respec t  to both time and coordinates) and hea t - t r ans fe r  boundary condi- 
tions of the third kind at the ends of the p r i sm and on its r e a r  surface.  Fo r  the par t icular  cases  of l inear 
and exponential time dependences of the boundary t empera tu res ,  the solutions relat ing to the p r i sm are 
obtained in closed form. 

I I 

Let us consider  a wedge-shaped p r i sm of a cer ta in  height h(0 <- z ~ h) and an 
a rb i t r a ry  aperture  angle 2e~--a ~ ~-< or) bounded by a r e a r  surface r = R. The 
choice of the cyl indrical  coordinate sys tem is i l lustrated in Fig. 1. 

Let us assume that at the initial instant of time �9 = 0 the p r i sm is c h a r a c -  
ter ized by a specific tempera ture  distribution 

t (r, % z, o ) =  to(r, (;, z). (1) 

On the end surfaces  (z = 0 and z = h) and on the r e a r  surface of the p r i sm (r 
= R) the heat t ransfer  with the surrounding medium is specified by Newton's 
law with corresponding relat ive hea t - t r ans fe r  coefficients h i ,  n2, n3. In o r -  
der to simplify the calculations we take the temperature  of the surrounding 
medium as zero;  this will not r e s t r i c t  the generali ty of the solution. The 
boundary conditions of heat t ransfer  may then be written in the following man-  
her  [11: 

Fig. 1. Computing Ot -I- ~1 t = 0 for r ~ R, 
scheme for the sam-  Or 

pie, and choice of O_~t _ n2 t = 0 for z = 0, 
coordinate system.  Oz 

(2) 
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Ot 
- - §  for z = h .  (3) 
0z 

The t empera tu res  on the faces of the wedge-shaped p r i sm go = - - a  and go = ~ we shall take as being specified 
functions of the coordinates  r and z and the time T 

t (r, - -~,  z, ~)= tdr, z, ~)/. 
t (r, a, z, ~ )=q( r ,  z, T) i (4) 

Thus the problem of determining the unknown tempera ture  distribution t(r ,  go, z, T) in the p r i sm reduces  to 
the integration of the differential  equation of t ransient  heat conduction 

Or / O~t 1 Ot t O~t , O2t '~ a ~ + . . . .  ' +  . 

o-T 
i -  

t Or -7- Ocp ~ \Or ~ 
(5) 

( 0 ~ r . ~ R ,  - - a ~ . . < a ,  O~z~--~h) 

subject to the initial condition (1) and the boundary condition (2)-(4). The condition of finite temperature  as 
r ~ 0 is also introduced in the usual way. 

In order  to solve the problem we set up a sys tem of or thonormal ized eigenfunctions depending on the 
coordinate go, which we obtain f rom a solution of the homogeneous Sturm--Liouvil le  problem [2]: 

2~ " q )  
(6) 

(m = 0, ], 2 . . . ) .  

Express ing  the unknown tempera ture-d is t r ibu t ion  function t(r ,  go, z, ~-) in the form of an expansion with 
respec t  to the sys tem of eigenfunctions (6) 

t(r, % z, ~)= ~ G ( r ,  z, ~)(I)A~), (7) 
m=O 

we obtain an inhomogeneous differential  equation for the coefficients of the expansion 

Otm& . = a2 \ ~Ur2 + ( 0 2 t i n  .1 Otm + 02tin v ~ ) 
r ~ Oz~ - 7  G + r,~, (8) 

which is to be solved subject to the initial condition 

G(r, z, O)---(tm)0= j'to(r, ~, z)Om(~)d~ (9) 
--(% 

and the boundary conditions 

In Eq. 

Olin • =- 0 for 
Oz 

Otto ~- ~atra = 0 for 
Oz 

(8) we have introduced the nomenclature 

oG + • = o " for r = R, (10) 
Or 

z = O  

z = h  

2 m +  1 
2~z 

~n a=v ~) + t2(r, z, ~)]. Fro(r, z, x )=  (--1) ~ [tl(r, z, 

(11) 

(12) 

Let us apply a finite integral  t ransformat ion  of the Hankel type to the boundary problem (8)-(11) in respec t  
of the variable r;  we define this in the following way [3]: 

R 

rm(~k, z, ~) = S r/m(r' z, ~) J~(~kr) dr, (13) 
0 

where 7~ k are the positive roots  of the equations 
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According to [3]. the equation for invert ing the integral  t ransformat ion  (13) takes the form 

2 ~ ,  J"(Lkr).. Tm(~,~, z, x). (15) t,.~, z, ~)= - ~  _ .  )~ ( ~ )  + s~(~R) 

For  the function Tm(X k, z. r ) .  af ter  applying the t ransformat ion  (13) to the problem (8)-(11). we obtain the 
different ia l  equation 

OF.Or _ a~ ( O'T. +-if, n, (16) 

where 
R 

P,n()~a, z, x )= .l rFm(r' z, ~) Jv(~,~r)dr 
0 

with the initial condition 

and the end conditions 

R 

Tm(~, k, z, O) = (Tin) o = ~ r q~o Jv(Lhr) dr 
0 

(17) 

OT'n - -  g2Tm = O for z-----O, 
Oz 

(18) OTm 
OZ +usTr n = 0  for z = h .  

To the problem (16)-(18)we now apply an integral  t ransformat ion  with r e spec t  to the var iable  z which 
was used in [4] for  the heat-conduction problem in a cyl inder  of finite length 

h 

T-~m()~k. ~q. x) = .[ Tm(~ k, z. x) Z (~qz) dz. (19) 
0 

where 

The function Z (~i z) sa t isf ies  the equation 

Z Otlz) = cos ~z + .  % sin ~qz. (20) 
~q 

d2Z 
dz i. -}- ~t~ Z =0 (21) 

and the conditions 
dZ + u s Z = 0  for z = h  
dz 
dZ 

- -  - -  u2Z ----- 0 for z = 0  
dz 

(22) 

where #i  are  positive roots  of the equation 

t g ~ h =  u2 + % I~. 

The equation for  invert ing the t ransformat ion  (19) takes the fo rm 
ca 

Tm(X h, z. ,) = ~ A~m()~k. ~f. ") Z (~tlz). 
i ~ l  

(23) 

(24) 

where 
h 

] Ai = Z~(rqz) dz = 
0 

2 2 2~ (~', + • 

(~,? + x~) (~ + z]) h + (u~ + Us) (~,~ + ~.,~.) 

The function Tm(X k, Pi.  T) sa t isf ies  the ordinary  different ia l  equation 
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d~ 
(25) 

with the initial condition 
h 

Tm(Eh, ~,  O) = .f (Tin)~ Z (~hz) dz. (26) 
0 

In Eq. (25) 

h 

Fm()~h, ~i, ~1= .fFm(~k, z, ~)Z(tqz)dz. (27) 
0 

The general  solution of Eq. (25) for  the condition (26) takes the form 

0 

h 

+ t" (Tm)o Z (~z) dz exp [-- a2(~ + ~)  x]. (28) 
6' 

Car ry ing  out the inverse  t ransformat ions  in accordance with (24) and (15), we finally obtain the t empera tu re  
dis tr ibut ion in the wedge-shaped p r i sm in the form:  

2 Z (2m + 1) ~ t (r, % z, ~) R2~fl ~ cos 2a tp. 
m ~ 0  

k=l J" (~R) -~- J; (~R) -= 
0 

h 

X exp [-- ae()~ + ~x[) (~ --  u)] dtt+ t (Tm)~ Oxiz) dz 
) 
0 

Using Nq. (29) we may determine  the t empera tu re -d i s t r ibu t ion  function in the wedge-shaped p r i sm for 
any boundary conditions of the type (1)-(4). 

It is of considerable  prac t ica l  in te res t  to de te rmine  the t empera tu re  distr ibutions in a sample of 
wedge-l ike profi le  for  the ease in which the t empera tu re  of the faces va r ies  in accordance with a specific 
t ime law. Boundary conditions of this kind may be used for studying the kind of sample heating or cooling 
conditions actually encountered in exper imenta l  work. 

Let us consider  the pe r t i eu la r  case in which the t empera tu re s  of the sample faces vary  l inear ly  with 
t ime at a cer ta in  constant ra te  of change v, i . e . ,  we specify the boundary conditions (4) thus. 

t(r, --~, z, ~)=to+VT, 

t(r, ~, z, ~)= t o -t-w. (30) 

We taken the initial sample t empera tu re  as constant 

t(r, % z, 0 )=  t o = const. (31) 

Allowing for (9), (12), (17), and (27), we then obtain the t empera tu re  distr ibution in a wedge-shaped p r i sm 
subject to the boundary conditions (30) in the following form:  

2 Z t (r, qJ, z, -c) a~2 (-- 1) ~ cos (2rn + 1) n 
2 ~  q~ r m ~ 0  

J~(~kr), (cos ~iz ) 
i = 1  ~ i  
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X { ~ [ t o + v , -  v ( 

x [ (~ --  2} ~ .m~(X~,  S_~, ~_~ ( ~ )  - -  ~ .RS~_, (~)  S_.. ~ ( ~ )  ++] 
X ~h sin ~hh - -  z~ cos vhh 4- • 2t ~ _~, (~2 + ~2~ 

~t~ + ~.~R~ e 

• I m ~ { ~  So,~_l{~}- ~,~.r _~{~} s~ ,#~ l  + ~1 }. 

~' (~  + ~) 

(32) 

In express ion  (32) the coeff icient  A i is de te rmined  in accordance  with (24) while Sp,q(Z) is a Lommel  func- 
tion [5]. 

When the t e m p e r a t u r e  on the faces  of the p r i s m  v a r i e s  in accordance  with an exponential  t ime law 
with a ce r ta in  var ia t ion  coefficient  v,  i . e . ,  the boundary conditions (4), take the f o r m  

t(r, - - a ,  z, ~) = t(r, a, z, T) = t 0exp( -w) ,  (33) 

a f te r  repea t ing  all the foregoing t r ans fo rma t ions  we obtain the t e m p e r a t u r e  dis tr ibut ion of the sample  in 
the following form:  

2 ' ~  (2m+l)r~  
t (r, % z, z) = aR ~- , ~  (-- 1) ~n cos 2a " ~ 

m~0 

X 

k=l .= I~i I 

{I a%t~ exp ( - - v T ) -  a'vt~ exp [-- a~(~ + I~) T]] 
~ ( ~  + ~,~ } - ~ ~ ( ~  + ~ )  - o 

• [(~ - 2} ~ , m # ~ )  s_~,~_,{~) - ~,m~_#~} s. . , ,#~}+ ~!~]~j 

P'i sin ~h - -  ~.~ cos ~hh + • 2t o 

• [%m#~)So,~_l(~)-~m~_,{~)s.#~)+~l I (34) 

The resu l tan t  exp re s s ions  for  t rans ien t  t e m p e r a t u r e  d is t r ibut ions  in a wedge-shaped  p r i s m  consti tute 
s e r i e s  in known, tabulated functions and may be used for  numer i ca l  calcula t ions  of t e m p e r a t u r e  f ields in 
wedge-shaped samples  using an e lec t ronic  computer .  
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